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The task of integration of difference equation, that is unsolvable in 

the quadratures. 
 

In 1969 J.L. Massey in his work [1] formulated a universal cryptographical attack on the 

generators of encoding sequence, which has a potential to replace any generator of cipher (code) 

by its shortest linear equivalent. 

If a shift register with linear feedback has generated a cipher sequence with linear 

complexity L , then investigation of L2 bits of this sequence is enough.  

By linear complexity (linear range, liner excursion) of sequence for enciphering we 

understand a length L of the shortest shift registry with linear feedback, which can create this 

sequence. 

The results of Massey’s works have implementation in the Berlekamp-Massey algorithm 

[1]. This algorithm is a strong quality indicator for enciphering sequence.    

But G.Vernam’s chipper, which has been known since 1926, is the only hope for absolute 

safety [2]. This cipher needs a random key.  The basic characteristic of random key is its 

unpredictability.  

The author of this article formulated the task of getting a mechanism of resistance to 

Berlekamp-Massey’s algorithm. During the investigation the author has learnt a wide class (large 

number) of elementary and special mathematical functions and has chosen on differential 

equation of Riccati. 

It is known, that the differential equation of Riccati  
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generally speaking, can not be integrated in quadratures (this equation can not be solved by the 

finite number of serial (step-by-step) integrations). 

The equation (1) can be written in terms of sequences or arrays: 
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where  P , Q  and R  are known sequence, Y  - is an unknown sequence.  

We can find the Y  by solving the next system of equations: 
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The common solving of this system is equivalent to solving of equation 0),( 0 =yyf k
n , 

where nk 2= . The last equation has the infinite number of roots, because the number of the 

variables is more than the number of equations.  

For practical use let us rewrite (1) as  
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Where QP,  - are known sequences (parameters); 

p  - Large prime number; 

R  - Galois field )( pGF , 

Y  - Unknown sequence. 

Let us suppose, that a cryptanalyst knows the values of RQP ,, . If the sequence Y is a key 

sequence, then a cryptanalyst needs to solve the task of discrete integration of difference 

equation that does not have solutions in the quadratures. 
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